CHARACTERIZING GENERICITY AND EPISTEMIC COMMITMENTS

Jon Ander Mendía & Hana Filip

December 18 2018 ~ SPE 10 @ UPF
THE PLOT
Generics

Generic statements convey generalizations.

- Generalizations: non-accidental, principled characteristics of some (type of) individuals/situations.

⚠️ Essential to express the ways in which we view the world and how we reason about it.
Characterizing Generics (CGs)

- No general agreement on the criteria that single out *all and only* CGs.
Characterizing Generics (CGs)

- No general agreement on the criteria that single out all and only CGs.
- Two types of CGs, (roughly) depending of the type of subject:
 - CGs with *kind* denoting NPs (e.g., Dahl 1995, Pelletier and Asher 1997): the regularity holds of the kind *and* across individual instances of that kind.

(1) a. Triangles have three sides.
 b. Birds fly.
Characterizing Generics (CGs)

- No general agreement on the criteria that single out *all and only* CGs.
- Two types of CGs, (roughly) depending of the type of subject:
 - CGs with *kind* denoting NPs (e.g., Dahl 1995, Pelletier and Asher 1997): the regularity holds of the kind *and* across individual instances of that kind.

(1)
 a. Triangles have three sides.
 b. Birds fly.

- “Habituals”: CGs with object-denoting subjects, express a generalization over situations that are specified by the corresponding episodic predicate.

(2)
 a. Liz smokes after dinner.
 b. The sun rises in the East.
It is clear, intuitively, that generic sentences convey generalizations; i.e. non-accidental, principled conditions, etc.
The problem

- It is clear, intuitively, that generic sentences convey generalizations; i.e. non-accidental, principled conditions, etc.

The problem

It is far from clear \((i) \) what their truth-conditions are, and \((ii) \) whether it is possible to provide a uniform analysis of all CG sentences, given the variety of conditions under which they are judged to be true.

- What counts as “non-accidental”? What counts as “principled”?
- What is “exceptional”?
- How do we form such generalizations?
...
Is it possible to provide a single unified semantics for CGs?
PROPERTIES OF CGS
1. Exceptions

- Some CGs allow exceptions:

(3) Birds fly. \(\sim \text{in the general case...} \)
1. Exceptions

- Some CGs allow exceptions:

 (3) Birds fly.
 \[\sim \textit{in the general case...} \]

- Others don’t:

 (4) Triangles have three sides.
 \[\# \textit{in the general case...} \]
1. Exceptions

- Some CGs allow exceptions:

 (3) Birds fly. \(\sim \) *in the general case*...

- Others don’t:

 (4) Triangles have three sides. \#*in the general case*...

- Some CGs “integrate” the exception:

 (5) Mosquitoes carry West Nile virus. \(\sim \) *in the general case*...
2. Not about majorities

- Not any property that is true of a majority of a population guarantees the truthfulness of its corresponding generic statement.

(6) Germans are right-handed.
 FALSE, even if it turns out to be the case that most Germans are right handed.
2. Not about majorities

- Not any property that is true of a majority of a population guarantees the truthfulness of its corresponding generic statement.

 (6) Germans are right-handed.
 \(\text{FALSE, even if it turns out to be the case that most Germans are right handed.}\)

- Being a minority does not preempt CGs (as in the ‘mosquitoes’ example above); being a majority is not sufficient for forming CGs.
3. Intensionality

- Some generalizations have never been, or may never be, actualized:

 (7) This machine crushes oranges.
 TRUE, even if the machine has never been used.
3. Intensionality

- Some generalizations have never been, or may never be, actualized:

 (7) This machine crushes oranges.
 TRUE, even if the machine has never been used.

- Co-extension does not guarantee truth:

 (8) a. Lions have manes.
 TRUE even if only male lions have manes.

 b. Lions are male.
 FALSE even if the all and only the lions that are male have manes.
So...

- The problem is that the truth of a generic statement does not (solely) depend on quantity, i.e., they do not (just) depend on knowing **how many cases verify it**.

- There is a tension:
 - We have clear intuitions about what CG-statements are.
 - We do not know what the necessary conditions to form CGs are.

❖ We seem to understand generic statements, but we don’t understand why we understand them.
TWO THEORIES
Question

Is it possible to provide a single unified semantics for CGs?

- **Null hypothesis**
 CGs form a single class of sentence types constituting a unified phenomenon, for which a unified semantic analysis is possible and desirable.
Carlson (1995): two perspectives for a unified analysis

- The Rules & Regulations (R&R) perspective:
 The truth of CGs depends on some causal structure or forces that are behind episodic instances in the world.

(9) a. Bishops move diagonally. game rules
 b. Tab A fits in slot B. operating instructions
 c. The Vice-President succeeds the President. parliamentary rules
Carlson (1995): two perspectives for a unified analysis

- The Induction perspective:
 CGs express inductive generalizations whose base is some observed set of instances. They are *inferential* generalizations based on patterns, as such they must be backed up by evidence.

(10) a. Birds fly.
 b. Liz smokes after dinner.
Carlson (1995) favors the R&R approach, with reservations wrt. unification:

(11) a. Rule descriptions: ✓R&R; ✗Ind.
 Bishops move diagonally, In the UK one drives on the left...

b. Non-actuality: ✓R&R; ✗Ind.
 This machine crushes oranges, Tab A fits in Tab B...

c. ILPs: ✓R&R; ✗Ind.
 John is a bachelor/murderer...
Carlson (1995) favors the R&R approach, with reservations wrt. unification:

(11)
<table>
<thead>
<tr>
<th>Rule descriptions:</th>
<th>✓ R&R; ✗ Ind.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bishops move diagonally, In the UK one drives on the left...</td>
<td></td>
</tr>
</tbody>
</table>

b.
<table>
<thead>
<tr>
<th>Non-actuality:</th>
<th>✓ R&R; ✗ Ind.</th>
</tr>
</thead>
<tbody>
<tr>
<td>This machine crushes oranges, Tab A fits in Tab B...</td>
<td></td>
</tr>
</tbody>
</table>

c.
<table>
<thead>
<tr>
<th>ILPs:</th>
<th>✓ R&R; ✗ Ind.</th>
</tr>
</thead>
<tbody>
<tr>
<td>John is a bachelor/murderer...</td>
<td></td>
</tr>
</tbody>
</table>

d.
<table>
<thead>
<tr>
<th>Habituals:</th>
<th>✗ R&R; ✓ Ind.</th>
</tr>
</thead>
<tbody>
<tr>
<td>John smokes after dinner, Liz drives to work</td>
<td></td>
</tr>
</tbody>
</table>

e.
<table>
<thead>
<tr>
<th>Inferential generalizations:</th>
<th>✗ R&R; ✓ Ind.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crows are smaller than ravens....</td>
<td></td>
</tr>
</tbody>
</table>

f.
<table>
<thead>
<tr>
<th>Gradability:</th>
<th>✗ R&R; ✓ Ind.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dutchmen are good sailors, African marathoners run fast...</td>
<td></td>
</tr>
</tbody>
</table>

g.
<table>
<thead>
<tr>
<th>Exceptions:</th>
<th>✗ R&R; ✓ Ind.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Categorically excluded from R&R.)</td>
<td></td>
</tr>
</tbody>
</table>
A NEW PERSPECTIVE
Overview

Question

Is it possible to provide a single unified semantics for CGs?

- Some linguistic expressions are dedicated (morphological) markers of certain type of inductive generalizations.
- Our focus: the stance that the cognitive agent takes on exceptions to the generically predicated property, which in turn correlates with different types of generalizations.
Focus on exceptions

- **Fact**
 For some generalization g, either there are exceptions to g, or there aren’t; E (“has exceptions”) induces a bipartition of the space of all g.

$$
\begin{array}{c|c|c|}
\neg E & g_1 & g_3 \\
\hline
E & g_2 & g_3 \\
\hline
& g_4 & g_5 \\
\end{array}
$$
Focus on exceptions

- Given that for any g, either $E(g)$ or $\neg E(g)$, a cognitive agent a may contend three hypotheses as to what a knows concerning the supporting evidence for g are: either a knows that g has exceptions, a knows that g hasn’t exceptions, or a does not know.

\[
\begin{align*}
K_a \neg E(g) & \quad \text{impossible exceptions} \\
\neg K_a \neg E(g) & \quad \text{possible exceptions} \\
K_a E(g) & \quad \text{obligatory exceptions}
\end{align*}
\]
Focus on exceptions

\[
\begin{array}{c}
\neg E \\
E \\
\end{array}
\quad
\begin{array}{c}
K_a \neg E(g_1) \\
\neg K_a \neg E(g_2) \\
K_a E(g_3) \\
\end{array}
\]
Focus on exceptions

\[
\neg E \
\rightarrow
\begin{array}{l}
E \\
g_1
\end{array}
\rightarrow
\begin{array}{l}
K_a \neg E(g_1) \\
K_a E(g_3)
\end{array}
\rightarrow
\begin{array}{l}
\neg K_a \neg E(g_2)
\end{array}
\rightarrow
\begin{array}{l}
\neg E \rightarrow g_1
\end{array}
\]
Focus on exceptions

\[
\neg E \\
E \quad g_3
\]

\[
K_a \neg E(g_1) \\
\neg K_a \neg E(g_2) \\
K_a E(g_3)
\]
Focus on exceptions

\[\neg E \quad g_2 \]

\[E \quad g_2 \]

\[K_a \neg E(g_1) \]

\[\neg K_a \neg E(g_2) \]

\[K_a E(g_3) \]
Focus on exceptions

- **General Hypothesis**
 Learning of generalizations proceeds by either learning some R&Rs or by Induction.

- Different types of generalizations are amenable to one or other by virtue of the properties the relevant generalization is about; i.e. on its base (sensu Carlson 2008).

Focus on exceptions

- **General Hypothesis**
 Learning of generalizations proceeds by either learning some R&Rs or by Induction.

- Different types of generalizations are amenable to one or other by virtue of the properties the relevant generalization is about; i.e. on its base (*sensu* Carlson 2008).

Where do R&R/Inductive CGs fall wrt. E?

R&R Generalizations

- R&R generalizations permit no exceptions, no counter-instances; they live in $\neg E$.
- They convey dispositions whose defining properties/conditions do not change, are taken to be tendentially stable.
- For a cognitive agent a, the issue of exceptions with SG wrt. some episode p to does not meaningfully arise; call these **Strong Generalizations** (SG).

(12) a. Triangles have three sides.
 b. Cats are mammals.
 c. This machine crushes oranges.
 d. John is a bachelor.
Inductive Generalizations

- Inductive generalizations are **inferential**: by repeated observation of episodes $p_1 \ldots p_n$, a pattern emerges.

- They are **ceteris paribus**.

(13) a. Birds fly.
 b. John smokes after dinner.
 c. Dutchmen are good sailors.
 d. Typically books are paperback.

- Unlike SGs, these are **Weak Generalizations** (WG); the cognitive agent a cannot rule out the possibility of exceptions.
Caution

There is no one-to-one correspondence between the presence/absence of exceptions and R&R/Induction:

(14) a. R&R \Rightarrow no exceptions
b. No exceptions $\not\Rightarrow$ R&R
Caution

⚠️ There is no one-to-one correspondence between the presence/absence of exceptions and R&R/Induction:

(14) a. R&R ⇒ no exceptions
 b. No exceptions ⇒ R&R

- Some “inductive” generalizations do not have exceptions:

(15) The sun rises in the East.

⚠️ Although *ceteris paribus*, these generalizations *behave* as Strong Generalizations: they are not inferential anymore; *linguistically*, they pattern with Strong Generalizations.
A clarification

(16) a. Triangles have three sides.
 b. The sun rises in the East.
 c. John smokes after dinner.
 d. Typically books are paperbacks.
Overt markers of Weak Generalizations

- **Concrete Hypothesis**
 The weak/strong distinction is not just notional. The *linguistic reality* of such division is supported by the existence of expressions that pick out one sub-type.

- Up next: Czech verbal suffix *va*, which we take to be a generic marker of Weak Generalizations

We will not defend here that *va* is neither an IMPF nor HABITUAL marker; see earlier work by Hana Filip.
THE CZECH SUFFIX VA
Va and epistemic commitments to exceptions

- Va-generics stand for weak generalizations that require compatibility with exceptions; ② and ③: they signal that a is denying the existence of a relevant SG, thereby committing herself to either the knowledge of exceptions (③) or explicitly signaling her ignorance concerning the absence/presence of exceptions (②).
The Czech suffix *va*

- *Va* (and its allomorphic variants) is a verbal suffix that previous literature has labeled as a frequentative or iterative marker (e.g. Dahl 1995, where *va* is treated as a marker of imperfective aspect).
- Here we will take for granted that *va* is not just a marker of imperfectivity (*pace* Dahl 1995; see the critic in Filip and Carlson 1997 and Filip 2018).
- Generic-*va*: a verbal suffix conveying genericity not to be confused with its homonymous imperfective suffix *va*.
The Czech suffix *va*

(17) **Imperfective vs. generic *va***

a. psát
 write.INF
 episodic: to write/be writing
 generic: to write as a habit

c. přepisovat
 ITER.write.IMPF.INF
 episodic: to rewrite/be rewriting
 generic: to rewrite as a habit

e. dávat
 give.IMPF.INF
 episodic: to give/be giving
 generic: to give as a habit

b. psávat
 write.VA.INF
 episodic: -
 generic: to write as a habit

d. přepisovávat
 ITER.write.IMPF.VA.INF
 episodic: -
 generic: to rewrite as a habit

f. dávávat
 give.IMPF.VA.INF
 episodic: -
 generic: to give as a habit
1. Obligatorily generic

- Unlike formally unmarked generic statements (e.g. with imperfective aspect) *va* is unambiguously generic (Filip and Carlson 1997).

\[(18) \text{ a. } Honza \textit{sedí} v hospdě.\]
\[
\begin{array}{l}
\text{Jon sit.IMPF in pub} \\
\text{'Jon {is sitting / (usually) sits} in a bar.'}
\end{array}
\]

\[(18) \text{ b. } Honza \textit{sedává} v hospdě.\]
\[
\begin{array}{l}
\text{Jon sit.VA in pub} \\
\text{'Jon {#is sitting / (usually) sits} in a bar.'}
\end{array}
\]

- Formally unmarked imperfectives behave as in English.

![Generic-*va* is sufficient but not necessary for CG.](image-url)
2. Obligatory verifying instances

- Va-generics require that there be at least one verifying instance of the generically-predicated property in the actual world.

(19) a. Tento stroj drtí pomeranče.
this machine crushes oranges
‘This machine crushes oranges.’
...✓‘although we haven’t used it yet.’

b. Tento stroj drtíva pomeranče.
this machine crush va oranges
‘This machine crushes-va oranges.’
...✗‘although we haven’t used it yet.’

Generic-va is ungrammatical in the absence of evidence.
3. Incompatibility with exceptionless CGs

- *Va*-generics are infelicitous with exceptionless generalizations such as analytical truths, constitutive and regulative rules, etc.

(20) a. *Trojuhelník* { má / #mívá } tři strany.
triangle has has.VA three sides
‘Triangles have three sides.’

b. *V Anglii* se { jezdí / #jezdívá } po levé straně.
in England REFL drive drive.VA on left side
‘In England one drives on the left.’

c. *Velryba* { je / #bývá } savec.
whale is is.VA mammal
‘A whale is a mammal.’

✿ This makes generic-*va* different with Q-adverbs like *usually*, etc., which are oftentimes compatible with exceptions.
Similarly, \textit{va}-generics are incompatible with universal quantification that uses up the same situation variable.

\begin{equation}
\#\text{Každou sobotu Honza sedává v hospodě}
\end{equation}

\begin{align*}
each Saturday & \text{ John sits.} \text{va in pub} \\
\text{‘Every Saturday John usually sits in the pub.’}
\end{align*}
4. Obligatory with positive-counterinstances

• Generic-va **must** be used to express generalizations that concern generic properties to which there are known *positive counterinstances* (Leslie 2008).

(22) a. Books are paperbacks.
 b. Typically, books are paperbacks.
4. Obligatory with positive-counterinstances

- Generic-va **must** be used to express generalizations that concern generic properties to which there are known *positive counterinstances* (Leslie 2008).

(22) a. Books are paperbacks.
 b. Typically, books are paperbacks.

(23) a. *Knihy jsou brožované.*
 book.PL.NOM be.IMPF paperback
 ‘Books are paperback.’

b. *Knihy bývají brožované.*
 book.PL.NOM be.VA paperback
 ‘Books tend to be paperback.’
5. No frequency conveyed

- The semantic contribution of the suffix \textit{va} cannot be reduced to an ordinary quantifier over situations (e.g. \textit{most}, \textit{usually}).

i. \textit{va} marks generic sentences that are true even if most instances do not satisfy the generically-predicated property.

\begin{tabular}{ll}
(24) a. & \textit{Žraloci napadá}\textbf{va}\textit{jí plavce}. \\
shark & attack.\textbf{va} bather \\
‘Sharks may attack bathers.’ & \text{TRUE} \\

b. & \textit{Žraloci obyčejně napadá}\textbf{va}\textit{jí plavce}. \\
shark & usually attack.\textbf{va} bather \\
‘Sharks tend to attack bathers.’ & \text{FALSE} \\
\end{tabular}
5. No frequency conveyed

- The semantic contribution of the suffix *va* cannot be reduced to an ordinary quantifier over situations (e.g. *most, usually*).

ii. *va* may freely occur with quantificational adverbs denoting low frequency, such as *rarely*.

that drawer is.*va* only very rarely locked
'That drawer used to be locked only very rarely.'

b. # Usually the drawer is very rarely locked.
5. No frequency conveyed

- The semantic contribution of the suffix *va* cannot be reduced to an ordinary quantifier over situations (e.g. *most, usually*).

ii. *va* may freely occur with quantificational adverbs denoting low frequency, such as *rarely*.

 that drawer is.*va* only very rarely locked
 'That drawer used to be locked only very rarely.'

b. # Usually the drawer is very rarely locked.
6. Epistemic effects

- In cases where exceptions to the generically predicated property are not known, \(va \)-generics convey an additional epistemic meaning that the speaker is uncertain as to the extent to which the generality expressed by the proposition holds.

\[(26) \ U \ každého \ domu \ bývá \ zahrada.\]

- at each house is \(va \) garden
 ‘At each house, there tends to be a garden.’
 \(\leadsto \) *in most situations, there is a garden next to each house*

\[(27) \] Felicity conditions of \((26)\): Speaker \(S \) is commited to the following...
 a. at least one house has a garden.
 b. at least one house does not have a garden.
 c. there is a house\(\sim \)garden pattern.
 \(\leadsto \) \(S \) cannot commit herself to a stronger statement.
Summary

<table>
<thead>
<tr>
<th></th>
<th>Strong</th>
<th>Weak</th>
<th>va</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verifying instances</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Obligatory exceptions</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Positive counterinstances</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Low frequency</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Epistemic effect</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Strong Weak va

| Verifying instances | 8 3 3 | Obligatory exceptions | 8 3 3 | Positive counterinstances | 8 3 3 | Low frequency | 8 3 3 | Epistemic effect | 8 3 3 |
CONCLUSION
There is *linguistic evidence* for two types of CGs. It’s not just a matter of on-the-surface non-uniformity of CGs; it is genuinely reflected in the semantic properties of marked/unmarked generics.
There is *linguistic evidence* for two types of CGs. It’s not just a matter of on-the-surface non-uniformity of CGs; it is genuinely reflected in the semantic properties of marked/unmarked generics.

The key factor to understand the distinction between marked (*va*) and unmarked (*va*-less) CGs (and SG vs WG) is essentially modal (epistemic): they signal speaker’s commitment to (the possibility of) exceptions.
There is *linguistic evidence* for two types of CGs. It’s not just a matter of on-the-surface non-uniformity of CGs; it is genuinely reflected in the semantic properties of marked/unmarked generics.

The key factor to understand the distinction between marked (*va*) and unmarked (*va-less*) CGs (and SG vs WG) is essentially modal (epistemic): they signal speaker’s commitment to (the possibility of) exceptions.

No unification for all CGs.
Formally unmarked generics in Czech (without the generic-va) are compatible with all types of CGs. So, why marked generics at all?
Marked vs. unmarked forms

- Formally unmarked generics in Czech (without the generic-va) are compatible with all types of CGs. So, why marked generics at all?
- CGs like *birds fly* are a “mixed case” of kind reference in a CG-statement (Krifka 2001, Krifka 2009), it expresses a “double generalization”.

Formally unmarked generics in Czech (without the generic-va) are compatible with all types of CGs. So, why marked generics at all?

CGs like *birds fly* are a “mixed case” of kind reference in a CG-statement (Krifka 2001, Krifka 2009), it expresses a “double generalization”.

Marked vs. unmarked forms

Formally unmarked generics in Czech (without the generic-va) are compatible with all types of CGs. So, why marked generics at all?

CGs like *birds fly* are a “mixed case” of kind reference in a CG-statement (Krifka 2001, Krifka 2009), it expresses a “double generalization”.

Marked vs. unmarked forms

Formally unmarked generics in Czech (without the generic-va) are compatible with all types of CGs. So, why marked generics at all?

CGs like *birds fly* are a “mixed case” of kind reference in a CG-statement (Krifka 2001, Krifka 2009), it expresses a “double generalization”.

Marked vs. unmarked forms

Formally unmarked generics in Czech (without the generic-va) are compatible with all types of CGs. So, why marked generics at all?

CGs like *birds fly* are a “mixed case” of kind reference in a CG-statement (Krifka 2001, Krifka 2009), it expresses a “double generalization”.

Marked vs. unmarked forms

Formally unmarked generics in Czech (without the generic-va) are compatible with all types of CGs. So, why marked generics at all?

CGs like *birds fly* are a “mixed case” of kind reference in a CG-statement (Krifka 2001, Krifka 2009), it expresses a “double generalization”.

Marked vs. unmarked forms

Formally unmarked generics in Czech (without the generic-va) are compatible with all types of CGs. So, why marked generics at all?

CGs like *birds fly* are a “mixed case” of kind reference in a CG-statement (Krifka 2001, Krifka 2009), it expresses a “double generalization”.

Marked vs. unmarked forms

Formally unmarked generics in Czech (without the generic-va) are compatible with all types of CGs. So, why marked generics at all?

CGs like *birds fly* are a “mixed case” of kind reference in a CG-statement (Krifka 2001, Krifka 2009), it expresses a “double generalization”.
Marked vs. unmarked forms

- Formally unmarked generics in Czech (without the generic-va) are compatible with all types of CGs. So, why marked generics at all?

- CGs like birds fly are a “mixed case” of kind reference in a CG-statement (Krifka 2001, Krifka 2009), it expresses a “double generalization”.

 (28) The generically-predicated property FLY is understood as being true...
 a. of the kind BIRD (on the basis of individual birds to which the property of flying is attributed), and
 b. of individual birds (on the basis of particular situations of flying by a stage of an individual bird).
Marked vs. unmarked forms

- Formally unmarked generics in Czech (without the generic-va) are compatible with all types of CGs. So, why marked generics at all?

- CGs like *birds fly* are a “mixed case” of kind reference in a CG-statement (Krifka 2001, Krifka 2009), it expresses a “double generalization”.

(28) The generically-predicated property *FLY* is understood as being true...

a. of the kind *BIRD* (on the basis of individual birds to which the property of flying is attributed), and

b. of individual birds (on the basis of particular situations of flying by a stage of an individual bird).

- The formally **unmarked** Czech generic sentence *Ptáci létají* highlights (28a).

- The formally **marked** generic sentence *Ptáci létavají* conveys (28b).
Other languages

- A number of languages have morphological devices available to signal CGs (often called “habituals”; Dahl 1995).
- Some examples (for more see Dahl 1995, 421).
 - Affixes on verbs: Swahili prefix *hu-*; Czech suffix *-va*-, West Greenlandic suffix *-sar-/tar*-
 - Reduplication of imperfective morphemes: Wolof.
 - Free forms in the verb’s auxiliary cluster: Georgian particle *xolme*, Swedish auxiliary verb *bruka*.

♫ It is a open question whether these too can be taken to signal Weak Generalizations and are not just mere “habituals” (in the more common frequency related sense).
About Gen

• Notice that:

 ▶ We have not said anything about the semantics of unmarked CGs.
 ▶ Not knowing the *actual* semantics of unmarked CGs greatly complicates any competition-based account of the epistemic effects of marked CGs.
About Gen

• **Notice that:**
 ▶ We have not said anything about the semantics of unmarked CGs.
 ▶ Not knowing the *actual* semantics of unmarked CGs greatly complicates any competition-based account of the epistemic effects of marked CGs.

• What is the relation of *va* (and similar markers) to GEN?

• Assuming all R&R generics involve GEN, it is clear that *va* cannot be GEN; rather, it behaves like a “vanilla” Q-adverb specifically tailored to express Weak Generalizations.
Thank you!

